

33% RPS Implementation Analysis

Methodology Overview

CPUC Presentation at CARB RES Workshop

December 14, 2009

Purpose and Scope of Analysis

- CPUC's Energy Division staff initiated this analysis in order to answer two key questions:
 - What steps will the state need to take to reach a 33% RPS by 2020?
 - How much will it cost to meet a 33% RPS by 2020?
- Scope of analysis included:
 - Estimate the amount of generation and transmission needed to reach a 33% RPS
 - Several procurement strategies (cases) for achieving a 33% RPS by 2020
 - Calculated the projected cost of different RPS cases in the year
 2020
 - Timelines for generation and transmission facilities needed to reach a 33% RPS

33% Implementation Analysis - Workplan

- Phases 1 and 2 of 33% Implementation Analysis addressed:
 - Analyzed the cost of four different 33% procurement strategies
 - Assessed the transmission needs of the 33% reference case and likely construction time
 - Identified market and regulatory barriers to renewable development
- Preliminary results for phases 1 and 2 were released June 2009
- 33% Implementation Analysis will be revised and updated for use in CPUC's long-term resource planning process (Feb 2009):
 - Updates transmission cost and timing based on RETI and CAISO 33% conceptual transmission plan
 - Updates integration costs based on CAISO's 33% integration study
 - Updates load forecast based on CEC's 2009 IEPR update

Portfolio Options for Achieving 33%

Case Name	Description			
20% RPS Reference Case	Utilities procure 35 TWh of additional renewables to meet a 20% RPS target by 2020.			
33% RPS Reference Case	Utilities procure 75 TWh of additional renewables to meet a 33% RPS target by 2020. There is heavy emphasis on projects that are already either contracted or short-listed with California IOUs, which includes a significant proportion of solar thermal and solar photovoltaic resources.			
High Wind Case	Assumes less reliance on in-state solar thermal and more reliance on the less expensive wind resources in California and Baja.			
High Out-of-State Delivered Case	Allows construction of new, long-line, multi-state transmission to allow California utilities to procure large quantities of low-cost wind and geothermal resources in other western states. Does not use tradable renewable energy certificates as a compliance tool. Thus, all out-of-state electricity is delivered to California.			
High DG Case	Assumes limited new transmission corridors are developed to access additional renewable resources to achieve a 33% RPS. Instead, extensive, smaller-scale renewable generation is located on the distribution system and close to substations.			

Major Cost Assumptions

- Projected costs are based on renewable technology costs and not the contract prices.
- The cost analysis assumes current technology costs, and makes no assumptions about the cost trajectory (up or down) of particular technologies over time due to potential transformation of the market.
- Average electricity costs per kilowatt hour are expressed as statewide averages and are not indicative of individual utilities' rates or the actual bills that consumers will pay.

Four Sources of New Resources to Fill Resource Gap

- ED Project Database
 - Contracted or short-listed utility projects
 - ED ratings of project viability
- RETI database
 - Pre-identified and proxy projects for California and BC
- E3 GHG Calculator
 - Estimates of renewable resource availability by resource class for non-California regions
- Original Renewable DG resource potential estimates

33% Reference Case Generation Resources

- 20% RPS Reference Case (9,437
 MW):
 - Tehachapi
 - Solano
 - Imperial North
 - Riverside East
 - distributed + out-of-state projects

- 33% RPS Reference Case (*14,361 MW*):
 - 20% Case all resources
 - Mountain Pass
 - Carrizo North
 - Needles
 - Kramer
 - Fairmont
 - San Bernardino-Lucerne
 - Palm Springs
 - Baja
 - Riverside East incremental
 - distributed + out-of-state projects

Developing Overall Timelines for the 33% RPS Reference Case

33% RPS Reference Case Timelines

- Timeline 1 (Historical experience without process reform)
 - 33% RPS achieved in 2024
 - Assumes planning, permitting, and construction processes are almost entirely sequential.
- Timeline 2A (Current practice with process reform & no external risks)
 - 33% RPS achieved in 2021
 - Assumes successful implementation of reforms currently in process
 - Timeline assumes no delays due to external risks beyond state control
- Timeline 2B (Current practice with process reform & external risks)
 - 33% RPS not achieved
 - Assumes state successfully implements reforms, but factors outside state control (e.g., technology failure, financing risk, environmental risk, and public opposition/legal challenges) cause delay or failure of some projects

Timeline 1 - Historical Experience Without Process Reform

Result: 33% RPS achieved in 2024

Timeline 2A - Current Practice With Process Reform & No External Risks

Result: 33% RPS achieved in 2021

Timeline 2B - Current Practice With Process Reform & External Risks

 Result: 33% RPS is not achieved, mitigating strategies are needed

Source: CPUC/Aspen

33% RPS Reference Case 7.1% Higher Cost than 20% RPS Reference Case

Category	20% RPS Reference Case	33% RPS Reference Case	33% High Wind Case	33% High Out-of-State Delivered Case	33% High DG Case
Total Statewide Electricity Expenditures	\$50.6	\$54.2	\$52.7	\$52.5	\$58.0
Average Statewide Electricity Cost	\$0.158/kWh	\$0.169/kWh	\$0.164/kWh	\$0.164/kWh	\$0.181/kWh
Difference Relative to 20% RPS Reference Case*	N/A	+\$3.6	+\$2.1	+\$1.9	+\$7.4
Percent Difference Relative to 20% RPS Reference Case	N/A	+7.1%	+4.2%	+3.8%	+14.6%
Difference Relative to 33% RPS Reference Case*	N/A	N/A	-\$1.5	-\$1.7	+\$3.8
Percent Difference Relative to 33% RPS Reference Case	N/A	N/A	-2.8%	-3.1%	+7.0%

^{*}Expressed in billions of 2008 dollars in 2020.

Sensitivity Analysis

- Projecting the costs of different renewable and fossil-fired energy sources out to 2020 requires numerous assumptions about future conditions including:
 - Natural gas and CO₂ allowance prices
 - Load growth (low-load sensitivity based on AB 32 Scoping Plan)
 - Technology costs (solar PV cost reductions)
- Many of these variables are highly uncertain, and some significantly influence the model's results

More Information

- 33% RPS Report and RPS Calculator:
 - http://www.cpuc.ca.gov/PUC/energy/Renewables/ hot/33implementation.htm
- CPUC RPS Website
 - www.cpuc.ca.gov/renewables

Back-up Slides

Assumptions Used in All Cases

Category	Assumption		
Load forecast	Energy Commission's 2007 IEPR reference case or mid-case load forecast		
Fuel price forecast	The Market Price Referent methodology, updated with new natural gas prices, was used to develop the base case forecast		
CO ₂ allowance price forecast	The Market Price Referent methodology was used for CO ₂ price forecasts to develop the base case forecast		
Energy efficiency achievement	No incremental energy efficiency assumed beyond what is already incorporated in the Energy Commission's 2007 IEPR load forecast		
Demand response achievement	No incremental demand response assumed beyond what is already incorporated in the Energy Commission's 2007 IEPR load forecast		
Combined Heat and Power (CHP) achievement	Energy Commission 2007 IEPR base-case load forecast assumption for CHP penetration		
Customer-installed solar PV	Energy Commission 2007 IEPR load forecast, 847 MW nameplate of customer-installed PV		
GHG allowance allocation	GHG emissions allowances are auctioned. Auction revenue from allowances equal to 2008 electricity sector emissions is returned to utilities		
Resource characterizations	Reference case resource cost assumptions based on RETI and E3 data for renewable generation and the Market Price Referent for new combined-cycle gas turbines		

2007 IEPR Load Forecast Assumptions

	2007 IEPR Load Forecast Assumption used in 20% and 33% RPS Reference Cases
Energy Efficiency (EE) 16 TWh of embedded EE (80% of the CPUC's 2020 EE go	
Customer-Installed Solar PV	847 MW nameplate of customer-installed PV
Demand Response	No incremental demand response
Combined Heat and Power (CHP)	No incremental CHP assumed

The Energy Commission assumed the remaining 20% of the 2020 EE goals impacts were "uncommitted," and therefore excluded from the state's official forecast. In D.07-12-052, the CPUC assumed that 100% of the 2020 EE goal impacts would be realized for procurement purposes. The Energy Commission load forecast does not take into account the Big Bold goals the CPUC established in D.07-10-032.

Renewable Resource Mixes in 2020 Under Different Cases

Impact of Gas and CO₂ Allowance Prices on Statewide Expenditures

- A 33% RPS can serve as a hedge against natural gas prices, but only under very high natural gas and GHG allowance prices
- Hedging value in itself is not a very strong justification to do a 33% RPS

Impact of High Energy Efficiency Achievement (Low-Load Sensitivity)

Costs	Base Case Loads	Low-Load Sensitivity
Total Electricity Expenditures, 20% RPS Reference Case	\$50.6	\$46.4
Total Electricity Expenditures, 33% RPS Reference Case ·	\$54.2	\$50.4
Incremental cost of 33% RPS Reference Case *	\$3.6	\$4.0
Percent Difference Relative to 20% RPS Reference Case	7.1%	8.6%

^{*}Expressed in billions of 2008 dollars in 2020.

- The interplay between energy efficiency achievement and renewable energy procurement highlights the need to analyze and plan for the interactions among the state's various policy goals.
- If the state does not plan for interactions, then a 33% RPS by 2020 could result in a surplus of energy or capacity and excess consumer costs.

Cost Savings Due to Solar PV Cost Reduction Sensitivity

- Dramatic cost reductions in solar PV could make a solar DG strategy cost-competitive with central station renewable generation.
- More analysis is necessary to determine the programmatic strategies necessary to achieve a high-DG scenario as well as the feasibility of high penetrations of solar PV on the distribution grid.